
Client-Server Architecture

Lotfi ben Othmane



1. Understand client/server architecture

2

Learning Outcomes



Architecture is defined by the recommended practice as the 
fundamental organization of a system, embodied in its 
components, their relationships to each other and the 

environment, and the principles governing its design and 
evolution.

ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural 
Description of Software-Intensive Systems

3

What is Software Architecture?



Reference architecture provides an overall logical 
structure for a particular type of application.

4

Reference Architecture



5

Single-Process Architecture



Reference architectures for single-process applications:

1. Desktop application
2. Embedded system
3. Mobile application
4. Service

6

Single-Process Applications



Is this git a desktop application?
7

Client/Server Application



One server and a set of clients
8

Client/Server Application

Server

Client 2Client 1

Client 3 Client 4



• A client-server style is a style that involves client processes 
and a server process that communicate through a network. 
A server could be accessed by many clients and a client can 
access many servers.

• A client sends requests, gets replies, and processes them.

• Examples: Email, database systems, etc.

• Variation of structures: Application servers, P2P (peer to 
peer), Client-Queue-Client-System (e.g. chat).

9

Client-Server Style



Client-server model is a 
distributed application 
model where tasks are 
partitioned between 
the client and server.

10

Client-Server Architecture

Secure 
Shell (SSH) 

Server

SSH 
Client 2

SSH 
Client 3

SSH 
Client 1

SSH 
Client 3



11

Putty – SSH Client

https://en.wikipedia.org/wiki/Secure_Shell



What operations does 
ssh need to support?

12

Client-Server Architecture

SSH 
Server

SSH 
Client 2

SSH 
Client 3

SSH 
Client 1

SSH 
Client 3



Client-Server Architecture

• Login
• Send commands
• Display command results
• Logout
• Create application session
• Execute commands
• Close session

13

SSH Operations 

Example of operations to be performed by the client and server.
Note: There is no order of the lists’ items.



Now we need to split 
the operations 
between the client 
component and server 
component. Then we 
need to specify the 
interactions between 
both components

14

Exercise – Client-Server Architecture

SSH 
Server

SSH 
Client 2

SSH 
Client 3

SSH 
Client 1

SSH 
Client 3



Client-Server Architecture

Client
• Send username
• Send password
• Send commands
• Set application session
• Display command results
• Request logout

Server
• Accept username
• Verify password
• Create application session
• Execute commands
• Close session

15

Example of operations to be performed by the client and server.
Note: There is no order of the lists’ items.



You should consider the style to:

• Support many clients (web applications, business 
processes…).

• Centralize data and management functions.
• Support many different types of clients.

16

Uses of the Style



Problems associated with sharing resources include:
• Managing the availability of resources for the clients at the 

server
• Managing the concurrency to access the resources
• Controlling the performance of the server
• Managing accesses to the clients scopes
• Diversity of the clients operating systems
• And more…

How would you solve these problems?

17

Uses of the Style – Cont.



18

Benefits - Ease of Data Management

One process can manage several accesses to the data 



19

Benefits - Ease of Maintenance

We deploy only one application server. 
Each user can install a version of the client.



20

Disadvantages - Scalability

Scaling the server component requires scaling 
both the data and the business logic together.

Git 
Repository

Git 
Repository



21

Disadvantages - Reliability

Failure of THE server affects all the users.



We wanted to share documents but,

• Do not have physical access to clients.
• Do not want to deploy the client application on the 

desktops.
• Need to support different hardware types.
• Need to support different operation systems (Linux, OS2, 

DOS/Windows, MAC OS).

22

History



Web browsers communicate with a server using the HTTP protocol

23

Simple Application – Web Sites

Web Browser

Server

HTTP + HTML



• We want to get data from the user 
and respond based on their 
requests – dynamic web pages.

• Each component is assigned a set of 
responsibilities.

24

Web Applications



Use web applications when:

1. You do not want to deploy software at the client host
2. There’s a need for the user interface to be portable
3. The application can be used over the Internet
4. Its ok to have restricted access to resources at the client

25

Web Applications



But what if:

1. You do not want to deploy software at the client host
2. There’s a need for the user interface to be portable
3. The application can be used over the Internet
4. Its ok to have restricted access to resources at the client
5. There is a need to access resources of the client

26



Rich Client Applications

• Rich internet applications 
typically run inside a browser. 
They support rich user 
interaction and business 
logic.

• Some business logic may be 
executed on the host 
machine.

• May use local resources. 

27



Reasons to use rich client applications:

• We need a rich interface that runs in a browser.
• We need to perform complex business logic on the client’s 

machine.
• The deployment of the application is simple.
• Loading time is acceptable.

28

Rich Client Applications



Architecture references (like client/server, web app) solve 
common challenges through the structure of the software: 
sharing data and processing, portability and deployability.

Architects fit their components into the reference architecture 
and use existing technologies such as web servers and 
database management systems as third-party software to 
address their needs.

29

So…



Thank You

30


